SYSTEMIQ

CATALYSING THE GLOBAL OPPORTUNITY FOR ELECTROTHERMAL ENERGY STORAGE

Technical Appendix – February 2024

FEBRUARY 2024

SUPPORTED BY

: Breakthrough Energy

DISCLAIMER

The numbers presented in this document, and associated reports are for generalised ETES cases, and may vary significantly from site specific numbers.

As ETES is an emerging technology segment, a significant portion of the data used for our report analysis was from expert interview sources. Whilst we endeavour to ensure that our analysis and assumptions are correct, through checks including independent reviews, some judgement is required due to the nature of this sector.

CONTENTS

INDUSTRIAL HEATING NEEDS

- A. Market sizing methodology and approach
- B. Industrial build-up
- C. Temperature & technology-based market sizing
- D. Indirect power system impact
- E. Impact on peak power system load

2 **OVERVIEW OF LONG-DURATION ENERGY** STORAGE TECHNOLOGIES AND COSTS

BY-COUNTRY ASSESSMENT OF INDUSTRIAL HEAT SOLUTION AFFORDABILITY

F. United Kingdom A. Netherlands

- B. Germany G. United States – ERCOT
- C. Spain
- D. France
- E. Denmark

MAIN INPUTS FOR LCOH

- A. Capex and O&M expenses
- B. Power price projections
- C. Taxes

MARKET SIZING METHODOLOGY AND APPROACH – INDUSTRY ASSUMPTIONS

First-Wave ETES Market Rest of Addressable Market

		CHEMICALS	A 1 11AA1NI A	CEMENT		OTHERS		
	TEXTILES	CHEMICALS	ALUMINA	CEMENI		OTHERS		
"First Wave" ² (process listed might be non- exhaustive)	 Majority of processes are in scope (<400°C), split using these assumptions: ETES to address 50% of 100-200°C & majority of 200-400°C Biomass in Pulp & Paper is not addressed 	 Polymerisation (130-200°C) Bleaching (40-150°C) Boiling (90-340°C) Concentration (120-140°C) 	 Bauxite digestion (100- 300°C) 	 Drying (20-250°C) 	 Downstream hot rolling (350-500°C) EAF pre-heating (up to 450°C) 			
Non "Drop-in" ^{3,} retrofit required		 Biorefining (up to 600°C) 	 Calcination (800- 1150°C) & pre-heating (up to 1050°C) 	 Clinker pre-heating (up to 900°C) 	 DRI pre-heating (300- 700°C) 			
Energy Transition- related Processes ⁴		 Biorefining (up to 600°C) 			 DRI pre-heating (300- 700°C) 	 Sustainable Aviation Fuel - Fischer Tropsch process (~250°C) Direct Air Carbon Capture (~300°C) Mining (up to 400°C) 		
Not included		 SMR⁶ (400- 600°C) Steam cracking⁷ (800- 900°C) 		 Alternative/ Substitute Cementous Materials⁸ (SCM) production 	 BF pre-heating (400-1250°C) BOF pre-heating (400- 1700°C) 			
Non-industrial ⁵ heat	Includes projected 2030 demand for coal repowering in 8 focus regions and a subset of district heating							

[1] Oil and Gas is omitted due to high usage of waste gas as heating fuel in several processes, and the temperature requirement for coking process; [2] First-wave is focused on steam-based processes (100-400°C) in Steel, Alumina, Cement, Chemicals, Textiles, Pulp & Paper, and Food& Beverage industries, where no adjustments are required in terms of retrofit to industrial process using the steam, i.e., the solution is "drop-in"; [3] Not "drop-in" use-cases where some retrofitor further engineering is required for ETES solutions to be applied. [4] Use-cases that scale with energy transition includes lower-carbon processes that are becoming more prominent with energy transition, using 2050 projected numbers; [5] Nonindustrial heat assumes ETES will address [a] 70% of district heating in 2030, [b] repowering 30% of coal plants running at 60% capacity factor (CF) in EU, North America and Oceania; [6] Steam Methane Reforming to produce hydrogen is better suited to be addressed by green hydrogen production through electrolysis; [7] Steam cracking's furnace layout is better suited to be addressed through direct electrification; [8] Substitute Cementous Materials (SCM), which currently covers limestone, fly ash, and calcined clay, is not calculated due to the complexity and uncertain mix if SCM in the of future cement industry; Sources: UNFCCC, International Aluminum Institute, World Steel Association, Eurostat, EuraTEX, USGS, Petrochemical Europe, Global Energy Monitor, US DoE, AREA, EPA, Encyclopedia of Materials, Arpaguas (2018), Energy Innovation.

4

Supported by

Breakthrough

Enera

TEMPERATURE & TECHNOLOGY-BASED MARKET SIZING – FOCUS INDUSTRIES ONLY

Combustion energy usage for selected countries and industries, per country

TWh per year (2030)

²Includes processes such as drying, heating, sterilizing, bleaching, washing, polymerization, and steam generation. Mostly in Food & Beverage, Pulp & Paper, Textile, Chemicals, as well as Alumina digestion; ³ Mostly consist of chemical-related processes such as polymerization, hot-rolling in Steel sector, and baking or roasting in Food & Beverages; ⁴ High-heat processes consists of hot-rolling in Steel, as well as Green Liquor treating in Pulp and Paper; calcination in Cement & Alumina. Note: Combustion energy only considers fuel combustion, not process emissions, whereas total industry combustion energy usage include fuel combustion and processes emissions. Power sector and transport energy consumption are not considered. Source: UNFCCC data set (2021) - except for Australia (2019), International Aluminum Institute, World Steel Association, Eurostat, EuraTEX, USGS, Petrochemical Europe

ASSUMPTION	VALUE	UNIT	SOURCE
Additional RES capacity	0.4	MW additional renewables per MW electrical ETES	Understanding the Role and Design Space of Demand Sinks in Low-carbon Power Systems, Jenkins and van der Jagt, 2021. Note: the paper estimates a range of -0.1 – 0.9 MW additional renewables, of which this analysis uses the average
RES capacity factor	25	%	Systemiq analysis
CCGT Efficiency	60	%	Compendium of energy and GHG efficient technologies and practices, IPIECA, 2023
ETES Capacity Factor	95%		Systemiq analysis
ETES Efficiency	95%		Systemiq analysis

IMPACT ON PEAK POWER SYSTEM LOAD

7

ETES Impact on Peak Load	NL	FR	ES	GER	DK	UK	US1	Global
Peak Load (MW) ²	11,000	84,700	35,000	117,400	5,100	48,600	85,700	4,187,000
ETES Peak Load (MW)	3,500	6,750 Calculate operatior	7,500 ed from First nal hours ar	9,000 Wave + Re nnually (95%	650 trofit demo Sefficiency	3,000 and in TWh a from 8760 i	38,000 divided by 83 hours per yed	730,000 820 ar)

Notes: 1) US annual generation and peak load is ERCOT only; 2) NL peak derived from 2023 annual period, from Tennet's (Dutch TSO) peak load of 23,000 MW in 2023 and interpolated using assumption NL is 40% (10,000 out of 25,000 km) of Tennet's operations; FR peak derived from 2023 annual period; ES peak derived daily peak in January 2024; GER peak derived from annual demand in 2018; UK peak derived from seasonal peak in Winter 2021; US peak derived from seasonal peak, using Summer 2023 Source: Respective countries' grid operator or Department of Energy. CBS for NL, RTE for FR, REE for ES, BDEW for GER, EnergiNet for DK, UKGOV for UK, ERCOT for US.

Supported by

Breakthrough Energy

CONTENTS

INDUSTRIAL HEATING NEEDS

- A. Market sizing methodology and approach
- B. Industrial build-up
- C. Temperature & technology-based market sizing
- D. Indirect power system impact
- E. Impact on peak power system load

OVERVIEW OF LONG-DURATION ENERGY STORAGE TECHNOLOGIES AND COSTS

3 BY-COUNTRY ASSESSMENT OF INDUSTRIAL HEAT SOLUTION AFFORDABILITY

A. Netherlands F. United Kingdom

B. Germany G. United States – ERCOT

C. Spain

D. France

E. Denmark

MAIN INPUTS FOR LCOH

- A. Capex and O&M expenses
- B. Power price projections
- C. Taxes

OVERVIEW OF LONG-DURATION ENERGY STORAGE TECHNOLOGIES AND COSTS

TECHNICAL ASSUMPTIO	COST ASSUMPTIONS*							
Long-Duration Energy Storage Technology	Efficiency		Capital cost		Operating cost (USD/kW-year)			
	(RTE%)	2030	2040	Unit**	2023	2030	2040	
Thermal	90%-96%	50–100	30–48	USD/kWh _t	13	13	11	
Mechanical	50%-80%	50–61	50–61	USD/kWh _e	16	16	16	
Electrochemical	60%-85%	206–252	165–201	USD/kWh _e	22	20	18	
Chemical	30%–50%	57–69	38–46	USD/kWh _e	20	17	13	

* Cost assumptions shown here correspond to a 24-hour duration

** "Capital cost - Unit" for corresponding technology indicates whether fixed operating expenditures are in USD/kWe or USD/kWt

Source: Driving to Net Zero Industry through Long Duration Energy Storage, LDES Council, 2023

CONTENTS

INDUSTRIAL HEATING NEEDS

- A. Market sizing methodology and approach
- B. Industrial build-up
- C. Temperature & technology-based market sizing
- D. Indirect power system impact
- E. Impact on peak power system load

OVERVIEW OF LONG-DURATION ENERGY STORAGE TECHNOLOGIES AND COSTS

3 BY-COUNTRY ASSESSMENT OF INDUSTRIAL HEAT SOLUTION AFFORDABILITY

A. Netherlands F. United Kingdom

B. Germany G. United States – ERCOT

C. Spain

D. France

E. Denmark

MAIN INPUTS FOR LCOH

- A. Capex and O&M expenses
- B. Power price projections
- C. Taxes

AFFORDABILITY OUTPUT NETHERLANDS

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

LCOH for a specific case can be different from the generic numbers represented in this graph. See Main report for details of specific use case

225

2023 (generic set up before optimisation)

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated,

Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs. Battery storage of 10h included in battery cases, which is shorter duration than ETES thermal storage.

Sources: Tennet – Dutch network operator, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES. Prospects for LDES in Germany (2022) – Aurora, NREL (2021) Commercial scale Li-Battery storage costs

2030 (generic set up before optimisation-please see figure 10 in main report for LCOH in optimised set up)

Supported by

Enera

3.A

Breakthrough

AFFORDABILITY OUTPUT | GERMANY

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

2023 (generic set up before optimisation)

12

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated,

Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs. Battery storage of 10h included in battery cases, which is shorter duration than ETES thermal storage.

Sources: Tennet – Dutch network operator, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES, Prospects for LDES in Germany (2022) – Aurora, NREL (2021) Commercial scale Li-Battery storage costs

for LCOH in optimised set up)

Supported by

Enera

AFFORDABILITY OUTPUT | SPAIN

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

LCOH for a specific case can be different from the generic numbers represented in this graph. See Main report for details of specific use case

Power T&D fees

Power taxes

Capex and fixed O&M

2023 (generic set up before optimisation)

2030 (generic set up before optimisation- please see figure 10 in main report for LCOH in optimised set up)

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated, Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs.

Sources: Boletin Oficial del Estado - dec. 2023, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES, Prospects for LDES in Germany (2022) - Aurora

Wholesale power price

Carbon tax

AFFORDABILITY OUTPUT | FRANCE

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

LCOH for a specific case can be different from the generic numbers represented in this graph. See Main report for details of specific use case

2023 (generic set up before optimisation)

2030 (generic set up before optimisation- please see figure 10 in main report for LCOH in optimised set up)

53

3

34

Thermal

Energy

Storage - w/

Standalone

120

34

1

Thermal

Energy

Storage

6h charae

+66%

72

8

6

30

Gas Boiler

119

34

Thermal

Energy

Storage -

6h charge

Power T&D fees

Power taxes

Private Wire

39

Heat Pump

<100°C

0

Capex and fixed O&M

61

Heat Pump

100-180°Ċ

0

Gas T&D fees and taxes

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated, Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs.

Sources: Commission de Regulation de l'Energie, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES, Prospects for LDES in Germany (2022) - Aurora

Supported by

•••

E-Boiler 100% E-Boiler 40%

106

27

14

Wholesale power price

Wholesale gas price

Carbon tax

109

20

AFFORDABILITY OUTPUT | DENMARK

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

LCOH for a specific case can be different from the generic numbers represented in this graph. See Main report for details of specific use case

2023 (generic set up before optimisation)

2030 (generic set up before optimisation- please see figure 10 in main report for LCOH in optimised set up)

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated,

Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs. Battery storage of 10h included in battery cases, which is shorter duration than ETES thermal storage.

Sources: Energinet, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES, Prospects for LDES in Germany (2022) - Aurora

Enera

SYSTEMI

Breakthrough

AFFORDABILITY OUTPUT | UNITED KINGDOM

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

LCOH for a specific case can be different from the generic numbers represented in this graph. See Main report for details of specific use case

120 120 104 . 27 13 84 12 74 10 68 10 _3_ 45 99 30 54 E-Boiler 100% E-Boiler 40% Gas Boiler Heat Pump Heat Pump Thermal Thermal Thermal <100°C 100-180°Ċ Energy Energy Energy

Power T&D fees

Power taxes

Private Wire

Capex and fixed O&M

Gas T&D fees and taxes

2030 (generic set up before optimisation- please see figure 10 in main report for LCOH in optimised set up)

Storage - w/

Standalone

Wind/Solar

Storage

6h charae

Storage

6h charae

W CHP1

2023 (generic set up before optimisation)

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated

Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs. Battery storage of 10h included in battery cases, which is shorter duration than ETES thermal storage.

Sources: Energinet, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES, Prospects for LDES in Germany (2022) - Aurora

Breakthrouah

Enera

Wholesale power price

Wholesale gas price

Carbon tax

AFFORDABILITY OUTPUT | <u>US – TEXAS ERCOT REGION</u>

GENERALISED LEVELISED COST OF HEAT IN 2023 AND 2030 OF DIFFERENT TECHNOLOGIES EUR/MWh thermal

LCOH for a specific case can be different from the generic numbers represented in this graph. See Main report for details of specific use case

2023 (generic set up before optimisation)

2030 (generic set up before optimisation- please see figure 10 in main report for LCOH in optimised set up)

1 Commercially available Solid State Thermal Energy Storage, Wholesale power price is for cheapest hours indicated

Note: Does not include current subsidies schemes, changes in T&D fees and Taxes, Balancing costs. Battery storage of 10h included in battery cases, which is shorter duration than ETES thermal storage.

Sources: Energinet, P2H Cost Calculator (2022) - Agora, IRENA Remap 2030, TNO Technology Fact sheet (2015), Thermal Energy Storage (2023) - RTC, Industrial Thermal Batteries (2023) - LDES, Prospects for LDES in Germany (2022) - Aurora

Enera

Breakthrouah

17

SYSTEMIQ

CONTENTS

INDUSTRIAL HEATING NEEDS

- A. Market sizing methodology and approach
- B. Industrial build-up
- C. Temperature & technology-based market sizing
- D. Indirect power system impact
- E. Impact on peak power system load

OVERVIEW OF LONG-DURATION ENERGY STORAGE TECHNOLOGIES AND COSTS

3 BY-COUNTRY ASSESSMENT OF INDUSTRIAL HEAT SOLUTION AFFORDABILITY

A. Netherlands F. United Kingdom

- B. Germany G. United States ERCOT
- C. Spain
- D. France
- E. Denmark

MAIN INPUTS FOR LCOH

- A. Capex and O&M expenses
- B. Power price projections
- C. Taxes

AFFORDABILITY INPUTS | TECHNOLOGY ASSUMPTIONS

19

Lower boundary Upper boundary

					-20% capex for 2030 in ETES				Number used for each	
TECHNOLOGIES	SOLUTIONS		EFFICIENCY %		2023 CAPEX EUR/kW, therr	mal	O&M EXPENSE EUR/MWh, the	s ermal		
	6 hrs charging	Sensible	92 97		650	1.650	1,8			
ETES	10 hrs charging	Heat	92 97		650	1.650	1,8		As	sumed for all
	12 hrs (6+6) charging	(solids)	92 97		650	1.650	1,8		teo	chnologies:
	Heat pumps < 100°C		375	450	1.043	1.500	0,4		•	10 MW capacity
neai pumps (nr)	Heat pumps 100°C-180°C		230 260		1.035	2.100	0,5			discharge
Ebailara	E-boilers at 40%		98		150 375		1,1		-	95% capacity
E-DOILETS	E-boilers at 100%		98		150 375		1,1			factor (except for e-boilers at 40%)
Gas boilers –	Brownfield		85 95		0		1,8 3,5			25 vears lifetime
Baseline case	Greenfield		85 95		136 234		1,8 3,5			for the calculation
Coal boilers –	Brownfield		83 90		0		3,5	6,7		of annualized capex
Alternative baseline	Greenfield		83 90		136 268		3,5	6,7	-	8.5% cost of
ETES Alternative	ETES + HP			Pconf	iquiration bays					capital
configurations	ETES in CHP model	ETES in CHP model		transformers at ~10% of ETES ca		Dex				

SYSTEMIQ

Breakthrough Energy

AFFORDABILITY INPUTS | WHOLESALE ELECTRICITY AND GAS ASSUMPTIONS

Source: 2022 Entso-E Power Prices, EEX Future Prices, MPP Power and Feedstock Projections (2020), Climate Change Committee - Deep-Decarbonization Pathways for UK Industry, Nord Pool, Cornwall Insight GB Power Market Outlook to 2030 Q2 2023

20

Supported by

SYSTEMI

Breakthrough

Energy

AFFORDABILITY INPUTS 2022 CHEAPEST CHARGING HOURS AS % OF DAILY AVERAGE

COUNTRY	SCENARIO	UNIT	6 hours	10 hours	a 14 hours
NL	BAU	% of baseload power price	63%	73%	81%
FR	BAU	% of baseload power price	76% 8		87%
DE	BAU	% of baseload power price	66%	73%	81%
DK	BAU	% of baseload power price	61%	70%	78%
ES	BAU	% of baseload power price	77%	82%	86%
ERCOT	BAU	% of baseload power price	49 %	59%	66%
UK	BAU	% of baseload power price	71%	84%	87%
An wh	alysis based or here intervals of	h hourly prices . B6 discount can b charging shorter than an hour (e	e higher .g., 30-	nput for e-boiler - 40% case	Input for Heat Pump w/ battery and E-boiler w/

SYSTEMIQ

Supported by

Breakthroug

Enera

AFFORDABILITY INPUTS | LCOE & LCOS ASSUMPTIONS

	COUNTRY	SCENARIO	UNIT	2023	2030
	EU	Standalone Solar	EUR / MWh	40.35	30.08
	EU	Standalone Wind	EUR / MWh	40.43	31.83
LCOE	UK	Standalone Solar	EUR / MWh	64.44	51.00
	UK	Standalone Wind	EUR / MWh	64.44	51.00
	US	Standalone Solar	EUR / MWh	24.20	16.95
	US	Standalone Wind	EUR / MWh	24.97	22.77
LCOS	COUNTRY	SCENARIO	UNIT	2023	2030
	All	Average	EUR / MWh	54.54	37.93
	All	Min	EUR / MWh	45.29	27.09
	All	Max	EUR / MWh	65.99	54.88

Input for **HP + Batteries case**, assumes a 10 hours storage commercial scale Li-battery

Note: Standalone Wind based on onshore wind LCOE

Supported by

Breakthrough

Enera

AFFORDABILITY INPUTS SPAIN 6+6 HOURS SCENARIO

EUR/MWh 90 ES: 6+6 hours scenario 80 charges for: 70 6h during the night, at baseload prices 60 modelled using EEX Spanish Power 50 futures 40 6h during Solar PPA window (10.00-16.00) 30 modelled using Standalone Solar prices 20 for Spain 10 ()2025 2026 2027 2023 2024 2028 2029 2030

PROJECTED POWER PRICE

- ES: Baseload - ES: 6hr Solar PPA - ES: 6+6 (average)

Source: Mission Possible Partnership Power Prices model; EEX Spanish Power Futures

AFFORDABILITY INPUTS GAS AND CARBON TAX

	COUNTRY	SCENARIO	UNIT	2023	2030
Gas Tax	NL	BAU	EUR/MWh	4.46	6.60
	FR	BAU	EUR/MWh	7.20	7.20
	DE	BAU	EUR/MWh	5.10	5.10
	UK	BAU	EUR/MWh	9.00	9.00
	DK	BAU	EUR/MWh	6.00	6.00
	ES	BAU	EUR/MWh	3.70	3.70
	US	BAU	EUR/MWh	0.00	0.00

	COUNTRY	SCENARIO	UNIT	2023	2030
Carbon Tax	EU + UK	BAU	EUR /tCO2	80.00	125.00
	DK	BAU	EUR /tCO2	80.00	150.00
	US	BAU	EUR /tCO2	0.00	0.00

Source: Eurostat - Gas prices components for non-household consumers - annual data (2022); Belastingdienst, CPI Indexed; Climate Change Levy rates - UK Government (2023); Taxes - Manufacturing Exemptions - Texas Tax Authority; Denmark Will Introduce Corporate Carbon Tax 2025 - Enerdata (2023); Systemiq analysis

CONTENTS

INDUSTRIAL HEATING NEEDS

- A. Market sizing methodology and approach
- B. Industrial build-up
- C. Temperature & technology-based market sizing
- D. Indirect power system impact
- E. Impact on peak power system load

OVERVIEW OF LONG-DURATION ENERGY STORAGE TECHNOLOGIES AND COSTS

3 BY-COUNTRY ASSESSMENT OF INDUSTRIAL HEAT SOLUTION AFFORDABILITY

A. Netherlands F. United Kingdom

- B. Germany G. United States ERCOT
- C. Spain
- D. France
- E. Denmark

MAIN INPUTS FOR LCOH

- A. Capex and O&M expenses
- B. Power price projections
- C. Taxes

LEVERS TO REACH AFFORDABILITY TIPPING POINTS – NON-GOVERNMENT INTERVENTION

1. POWER MARKET MOVES

Potential LCOH change based on day-ahead price volatility in the power market, derived from taking the average percentage price movements historically, from 2015 to 2023, excluding the extraordinary moves caused by the Ukraine war. This price movements range from 15% to 50%, which 30% was taken as the assumption used and applied to the 2030 projected wholesale market price, and increasing the B6 discount by 50%. Gas price fluctuations ranges from 35% to 45% based on futures.

2. SITE OPTIMISATION

The lower end of this range is based on a 10% improvement on general LCOH. The upper end of this range is based on difference in LCOH between grid connected and onsite renewables, or the difference between the general and lowest real use case LCOH.

3. TECHNOLOGY PROGRESSION

Reduction in LCOH based on further capital expenditure (CapEx) changes due to ETES technology improvement in 2030. The additional CapEx reduction is from Renewable Thermal Collective report.

4. VALUING DECARBONISATION

Net reduction in LCOH from willingness to pay additional "green premiums" on low-carbon products. The assumed percentage reduction is average of "Green" premium from 4 different sectors (with respective range of price premiums): Textile (15%-25%), Steel (40%), Textiles (15%), and Chemicals (10%-60%). The average of these 4 sectors are 25-30%, and then adjusted to LCOH contribution by assuming energy is 20% of Cost of Goods Sold. This calculation (20% of 25-30%) results in a net reduction on LCOH of 5 to 6%.

LEVERS TO REACH AFFORDABILITY TIPPING POINTS – GOVERNMENT INTERVENTION

5. GRID SERVICES

Additional LCOH reduction from participation of ETES in balancing and ancillary services. This is derived from an estimated 20,000 to 40,000 EUR/MWh/year revenue from flex services today (from technology providers) with a 50% discount for market uncertainty. This revenue is pro-rated with EU and US wholesale baseload power prices to obtain a US estimate.

6. GRID COST REFORM

Two potential levers depending on what has already been actioned: 1) reduction of grid fees to lowest price level or 2) 30-50% reduction in grid fees for interruptible connections

7. SUBSIDIES

Size of subsidy is equivalent to the gap between general 2030 ETES LCOH and 2030 gas boilers, i.e. the subsidy required if no other levers were applied.

